
International Journal of Theoretical Physics, Vol. 44, No. 11, November 2005 (C© 2005)
DOI: 10.1007/s10773-005-8984-0

Computational Power of Infinite Quantum
Parallelism

Martin Ziegler1,∗

Received October 31, 2004; accepted June 30, 2005

Recent works have independently suggested that quantum mechanics might permit
procedures that fundamentally transcend the power of Turing Machines as well as of
‘standard’ Quantum Computers. These approaches rely on and indicate that quantum
mechanics seems to support some infinite variant of classical parallel computing.

We compare this new one with other attempts towards hypercomputation by separat-
ing (1) its computing capabilities from (2) realizability issues. The first are shown to
coincide with recursive enumerability; the second are considered in analogy to ‘exis-
tence’ in mathematical logic.

KEY WORDS: Hypercomputation; quantum mechanics; recursion theory; infinite
parallelism.

PACS (2003): 03.67.

1. COMPUTABILITY

In 1936, Alan M. Turing gave an example of a well-founded (and thus
mathematically solvable) problem, which he showed to admit no computable
solution. More precisely in Turing (1936) he introduced what is now called the
Turing Machine (TM) as an idealization (‘model’) of a digital computer and
revealed that it was capable of solving a vast variety of practical problems like,
for instance, deciding whether a given integer x ∈ N is prime, that is, belongs to
L := {p ∈ N : p prime} ⊆ N or not.

Definition 1.1. A computational problem is a subset L ⊆ N. It is decided by
TM M if, upon input of any x ∈ N,

• M eventually outputs “0” (rejects) and halts in case x �∈ L.
• M eventually outputs “1” (accepts) and halts in case x ∈ L.

Having thus indicated the fundamental power of this machine, Turing then pro-
ceeded to exhibit its limitation by formally proving that the Halting Problem

1 University of Paderborn, Paderborn 33095, Germany; e-mail: ziegler@upb.de.
∗Supported by DFG project Zi1009/1-1.

2059
0020-7748/05/1100-2059/0 C© 2005 Springer Science+Business Media, Inc.

2060 Ziegler

H—the question whether a given TM M eventually halts or rather continues
executing indefinitely—cannot be decided by any TM M0. Notice that, accord-
ing to Definition 1.1., this hypothetical M0 is required to always give the correct
answer and to terminate. More precisely, the difficulty inherent to the Halting
Problem consists in telling within finite time whether M does not halt; for, sim-
ply simulating M step-by-step, M0 can easily identify the case when M does
terminate.

Turing’s result initiated the flourishing field of Computability or Recursion
Theory (Odifreddi, 1989). Its goal is to distinguish computable from uncomputable
problems and to classify the latter according to their degree of uncomputabil-
ity (Soare, 1987). For example, the following celebrated result of Matiyasevich
has settled Hilbert’s Tenth Problem in the negative by proving it equivalent
to H :

Theorem 1.2. (Matiyasevich (1970)) On the one hand, a given description of a
Diophantine Equation E (like Fermat’s famous “an + bn = cn” for a, b, c, n ∈
N) can computably be transformed into a TM M such that it holds: M terminates
iff E admits an integral solution.

On the other hand, a given TM M can computably be converted into the
description of a Diophantine Equation E in such a way that, again, M halts iff E

admits an integral solution.

Apart from the TM, many further sensible notions of computability have been
proposed: e.g., µ-Recursion (which gave the field its name), Herbrand–Gödel-
Computability (which led to the programming language Prolog), and λ-Calculus
(which stipulated Lisp). But they were all shown equivalent to the TM by Church,
Kleene, Post, Turing, and others; cf. e.g., Odifreddi (1989, Chapter I) or Atallah
(1999, Section 26.3+4). Even nowadays PCs are still basically just TMs (the
processor corresponds to the finite-state control and the infinite tape models the
computer’s finite but adaptively extendable storage) although very fast ones; recall
that we are dealing with problems that cannot be solved computationally at all,
neither quickly nor slowly. For the very same reason, (at least ‘standard’) Quantum
Computers are still no more powerful than an ordinary TM (Gruska, 1999, p. 3,
footnote 1).

1.1. Church-Turing Hypothesis

It should be stressed that both Halting and Hilbert’s Tenth Problem are de-
sirable to be solved for very practical reasons. The first for instance arises in
automated software verification; indeed, correctness of a program includes its ter-
mination which, by the above considerations, cannot be checked algorithmically.

Computational Power of Infinite Quantum Parallelism 2061

Similarly, a hypothetical algorithm for deciding feasibility of Diophantine Equa-
tions could be applied to computer-proving not only Fermat’s Last Theorem
but also to settle many other still open questions for example in number
theory.

Observing that Turing (1936) and Matiyasevich (1970) ruled out the possi-
bility of a Turing Machine to decide either of these problems, people have since
long tried to devise other computing devices exceeding its power. However, the
perpetual failure to do so plus the aforementioned results of a TM being able
to simulate many other notions of computability have eventually led to what has
become known as the Church–Turing Hypothesis:

Anything that can be computed in practice, is also computable by a TM.

We emphasize that, due to its informal nature, this hypothesis cannot be
proven formally. Arguments in its favor usually point out that computation is
a physical process which, by mathematically describing the physical laws it is
governed by, can be simulated by a TM up to arbitrary finite numerical preci-
sion; and infinite accuracy were required only for ‘chaotic’ processes that are
too sensitive to perturbations than being harnessable for practical computation
anyway.

However, it has later been pointed out that certain theories of quantum grav-
itation might actually not admit a simulation by a TM (Geroch et al., 1986,
p. 546); furthermore even classical mechanics seems to conceivably provide for
processes whose simulation requires infinite precision during intermediate times
only, whereas the resulting behavior is asymptotically stable and thus suited well
to realize a non-Turing form of physical computation (Yao, 2003). Moreover, the
laws of nature we know so far seem to restrict (if at all) the performance but not
the fundamental capabilities of computation (Bennett, 1985).

In fact, neither Church nor Turing themselves have put forward a claim as
bold as the way ‘their’ hypothesis is often (mis-)interpreted (Copeland, 1997).
Instead, the literature contains and discusses a rich variety of related hypotheses
(Ord, 2002, Section 2.2).

1.2. Hypercomputation

Anyway, the question remains open whether there might exist a comput-
ing device more powerful than the TM or not. To get an idea how such a Hy-
percomputer might look, theoreticians have started considering super-TMs and
their respective fundamental computing capabilities. This established the flour-
ishing field of research called ‘Hypercomputation’ (Copeland et al., 1999) that
entire volumes of significant journals have been dedicated to (Calude et al., 2002a;
Burgin et al., 2004). Devising such a formal model (i.e., an idealized abstraction)

2062 Ziegler

of a hypercomputer proceeds in many cases less by adding extensions to than by
removing restrictions from a TM.

Observation 1.3. The (decidability by a) TM is characterized by
(a) a finite control (the ‘program,’ so to speak);
(b) an initially blank, countable supply of memory cells
(c) storing a finite amount of information each (e.g., a bit or an integer);
(d) finite running time;
(e) possibly finite parallelism (as, e.g., for a nondeterministic TM).

Regardless of the details of its precise definition, these finiteness conditions di-
rectly imply that there is an at most countable number of different TMs; whereas
computational problems according to Definition 1.1. exist of cardinality of the
continuum. Thus, most of them are undecidable.

Conditions (a)–(e) underlie the mourned limitations of the classical TM, and
dropping one or more of them leads to several well-known models of hypercom-
putation; see, e.g., Ord (2002, Section 3) or Copeland (2002, Section 2). Oracle
machines for instance, subject of Turing’s dissertation in Princeton (Turing, 1939)
and now core of Recursion Theory (Odifreddi, 1989; Soare, 1987), correspond to
TMs with initial memory inscription, that is, they remove Condition (b); Blum,
Shub, and Smale’s R-Machine (Blum et al., 1989, in particular Section 1, Exam-
ple 6) abolishes Condition (c) by allowing each cell to store a real number; while
Infinite Time Machines due to Hamkins et al. (2000) lift Condition (d).

The proposal, consideration, and investigation of such enhanced abstract
models of computation and their respective computational powers by logicians
and theoretical computer scientists has proven particular seminal regarding related
contributions from Theoretical Physics on their realizability. For example, Beggs
et al. (2004) has indicated that a physical system breaking Condition (a) might
actually exist2 ; while Hogarth (1992); Etesi et al. (2002); Shagrir et al. (2003)
pointed out that in General Relativity there might exist2 space–time geometries
allowing one to watch within finite time a computer execute an infinite number of
steps and thus to lift Condition (d).

1.3. Quantum Mechanical Hypercomputation

Recently, several new approaches have been suggested for solving either
the Halting Problem (Adamyan et al., 2004; Calude et al., 2001, 2002b) or
Hilbert’s Tenth Problem (Kieu, 2003a,b). They exploit quantum mechanics and
thus form a nice counterpart to previous approaches based on General Relativity
(Etesi et al., 2002; Hogarth, 1992; Shagrir et al., 2003) as the other pillar of

2 Refer to Remark 1.4.

Computational Power of Infinite Quantum Parallelism 2063

non-classical physics. Recalling that ‘standard’ Quantum Computing does not
exceed Turing’s Barrier, these approaches must be non-standard in some sense
which closer inspection reveals to be infinite parallelism:

• “Our quantum algorithm is based on [. . .] our ability to implement phys-
ically certain Hamiltonians having infinite numbers of energy levels”
(Kieu, 2003a, top of Section 6.3);

• “The key ingredients are the availability of a countably infinite number
of Fock states, the ability to construct/simulate a suitable Hamiltonian”
(Kieu, 2003b, end of Section 4);

• “The new ingredients built in our ‘device’ include the use of an infinite
superposition (in an infinite-dimensional Hilbert space) which creates an
‘infinite type of quantum parallelism’ ” (Calude et al., 2002b, p. 123,
Section 5).

It thus seems that quantum mechanics allows to drop Condition (e) from Ob-
servation 1.3 and so to provide a new promising approach to the existence2 of
hypercomputers—an approach not included in Ord’s classification (Ord, 2002,
Section 3). The present work describes in Section 2. the theoretical consequences
from lifting Condition (e), that is the computing power of infinite parallelism.

We conclude this section with an already announced remark on the notion of
existence.

Remark 1.4. The question whether a physical device with certain properties exists
bears logical similarity to the question whether a mathematical object with certain
properties exists. In the latter case for a proof, only very few (namely constructive
or intuitionistic) mathematicians will

(A) insist that one actually constructs this object

whereas most are satisfied for instance with

(B) an indirect argument showing that its non-existence leads to a
contradiction.

In fact a majority of contemporary mathematicians will even take it for granted if

(C) the object’s existence does not lead to a contradiction.

For example, the claim “For every vector space there exists a basis” is of kind (C)
as are many principles in Functional Analysis: Each of them is equivalent to
the Axiom of Choice (Blass, 1984) and thus does not lead to a contradiction to
conservative set theory (C) but cannot be deduced from it (B) as has first been
proven by K. Gödel in Gödel (1940) and later strengthened by P. J. Cohen.

Similarly, the existence of a physical object can be proven in a strong way
(A) by actually constructing it. But in most cases, showing it (C) consistent with
physical laws is accepted as well. Observe that this is how both positrons and
black holes came into ‘existence’: As solutions of (and thus consistent with)

2064 Ziegler

Dirac’s Equation and Einstein’s General Relativity, respectively; only later have
new experimental observations upgraded our conception of their existence.

2. INFINITE PARALLEL COMPUTING

The prospering field of Parallel Computing knows and has agreed upon a
small collection of models as theoretical abstractions for devising and analyzing
new algorithms for various actual parallel machines (Atallah, 1999, Sections 45.2
and 47.2). Of course with respect to their principal power, that is computability
rather than complexity, they are all equivalent to the TM.

However, when talking about infinite parallelism, seemingly no such agree-
ment has been established, cf. e.g., Eberbach et al. (2003, p. 284); and in fact no
equivalence, either, as it will turn out. For instance, of what kind are the countably
infinitely many individual computers that are to operate concurrently—TMs or
finite automata? In the first case, do they all execute the same program? When is
the result to be read off? The answers to these questions fundamentally affect the
capabilities of the resulting system.

2.1. Infinite Cellular Automata

Consider parallelism in an infinite cellular automaton in the plane. More
specifically, we refer to Conway’s famous Game of Life (Berlekamp et al., 2004,
Chap. 25) where in each step, any cell’s successor state concurrently is determined
by its present state as well as those of its eight adjacent ones’ as follows (cf. Fig. 1):

• A dead cell with exactly three neighbors alive becomes alive, too;
otherwise it remains dead.

• A living cell with two or three neighbors alive stays alive;
otherwise (0,1,4 . . . 8 living neighbors, that is) it dies.

Definition 2.1. Starting from a given initial configuration, Life terminates if
the sequence of successor configurations eventually stabilizes. This resulting

Fig. 1. Sample initial and two successor configurations of life.

Computational Power of Infinite Quantum Parallelism 2065

configuration is called rejecting if it is empty (every cell dead), otherwise
accepting.

An initial configuration is finite if, out of the infinite number of cells, only
finitely many are alive.

Theorem 2.2. Life with finite initial configuration is a system with infinite par-
allelism yet equivalent to the TM. More precisely:

(i) Given a finite initial configuration, its evolution through Life can be sim-
ulated by a TM.

(ii) There is a finite initial configuration capable of simulating the Universal
(and thus any) TM.

Simulation here means: The TM terminates/accepts/rejects iff Life terminates/
accepts/rejects.

Proof: Life is easily programmed on a Turing Machine, for example by beginning
with the source code for one of the many correct implementations of Life available
on the internet. The converse Claim (ii) is a famous result based on a complicated
construction; see, Berlekamp et al. (2004, Chap. 25) for details. �

In particular, Life matches but does not exceed the computing capabilities of a
TM; cf. Atallah (1999, Section 26.4(1)). Here, finiteness of the initial configuration
enters crucially of course. One can indeed show that infinite initial configurations
in (ii) correspond to non-blank memory contents and thus to dropping in Obser-
vation 1.3 both Conditions (e) and (b).

2.2. Infinite Turing Concurrency

In order to focus on the power obtained from infinite parallelism only (that
is, by removing just Condition (e), now consider the finite automata replaced by
TMs. Indeed the three citations in Section 1.3. indicate that, whereas Quantum
Computing—and in particular simulating a single classical TM (Benioff, 1980)—
requires only a finite (or at most countably infinite) number of dimensions from
quantum mechanical Hilbert Space, its infinitely many dimensions provide room
for an infinite number of TMs: cf. Hilbert’s Hotel.

Strictness of Chomsky’s Hierarchy implies that a single TM is provably more
powerful than a single automaton (Atallah, 1999, Section 25.3). One may therefore
expect that the capabilities of an infinite number of TMs exceed those of an infinite
number of automata (and thus actually lead to hypercomputation); by how much,
however, turns out to depend.

In analogy to Definition 1.1., consider first the following notion of solving a
problem by means of infinite parallelism.

2066 Ziegler

Definition 2.3. Fix a problem L ⊆ N and a countably infinite family (Mk)
k∈N

of
TMs. This family solves L if

(i) each Mk , upon input of any x ∈ N, eventually terminates and

(ii) for each x ∈ N it holds: x ∈ L iff at least one Mk outputs “1” (accepts).

However observe that, whereas each individual Mk halts, the time required to
do so may depend on k so that it takes infinitely long for the entire family
(Mk)

k
to terminate. (We point out that this behavior resembles the fair infinite

nondeterminism of van Emde et al. (1989).) In order to get the entirety of all
their answers within finite time, the following additional requirement is therefore
important:

(iii) Upon input of any x ∈ N, all Mk terminate within finite time bounded
independent3 of k.

While seeming sensible at first glance, a second thought reveals that, even with
this restriction, the resulting notion of ‘infinitely parallel computability’ is still
unreasonable: simply because any problem L ⊆ N becomes trivially solvable by
an appropriate family (Mk)

k
. To this end let the program executed by Mk store

the constant “1” if k ∈ L and the constant “0” otherwise. Let its main part then
operate as follows: Upon input of x ∈ N test whether x = k; if so, output the
stored constant, otherwise output “0”; then terminate.

Observe that, in accordance with (iii), the test “x = k” can indeed be per-
formed in time depending only on x but not on k by comparing only the inital
segments up to the length of x. The trick lies of course in the according family
(Mk)

k
solving L being shown to merely exist. More precisely, (i)–(iii) fail to re-

quire that the descriptions of all Mk and their constants be computable. Therefore,
we finally include this condition as well, in Theoretical Computer Science known
as uniformity.

(iv) A TM M0 is capable of generating, upon input of k, (the encoding of)
Mk .

Here, encoding refers to a ‘blueprint’ of Mk; formally: to its Gödel Number
(Hopcroft et al., 2001, Section 9.1.2).

2.3. Computational Power of Infinite Turing Concurrency

This section reveals that the Definition 2.3. (i)–(iv) indeed yields an inter-
esting non-trivial way of hypercomputation. More precisely we show that, in this

3 But of course depending on x—otherwise there would not be a chance for Mk to even read the input.

Computational Power of Infinite Quantum Parallelism 2067

sense, infinite Turing-Parallelism can

• solve the Halting Problem H (Theorem 2.4)
• as well as Hilbert’s Tenth Problem (Theorem 2.6)
• but not Totality. (Corollary 2.7)

While H refers to the question whether given TM M , started on a single given
input x, eventually terminates, Totality asks whether M halts on all possible
inputs. So in contrast to the first, this even more important property of correct
software still remains intractable to automated verification even on this kind of
hypercomputer.

Even more than already in the previous ones, proofs in this section regularly
exploit well-known results from Theoretical Computer Science, for conciseness
reasons just by indicating according references.

Theorem 2.4. The Halting Problem is solvable by an infinity of TMs working
in parallel in the sense of Definition 2.3. (i)–(iv).

Proof: For each k ∈ N, consider the TM M ′
k working as follows: Given M and x,

it simulates M operating on x the first k steps of if M halts within these steps, then
M ′

k outputs “1” and terminates; otherwise it outputs “0” and terminates. In other
words, M ′

k is basically a Universal Turing Machine U (· ; k) with an additional
counter for the number of steps simulated so far in order to abort as soon as this
counter exceeds the prescribed threshold k.

Observe that the thus defined family (M ′
k)

k
satisfies (i) and (ii) from Defi-

nition 2.3. Moreover, since M ′
k is basically U with last argument fixed to k, one

easily confirms that (iv) an appropriate TM M ′
0 can indeed generate from k an

encoding of this M ′
k . And finally it is known (Du and Ko, (2000), Proposition 1.17,

p. 25) that the simulation by a Universal TM is possible with at most quadratical
overhead, i.e., M ′

k can be achieved to have running time t(n) ≤ c · (n · k)2 for some
constant c; Here, n denotes the length of the input to M ′

k , that is, of the joint binary
encodings of x and M .

Now let Mk be the TM obtained from applying the below Linear Speed-Up
Lemma 2.5 to M ′

k with C := k3. It follows that Mk has running time bounded
independent of k, that is, it complies with (iii) while still satisfying (i), (ii),
and (iv).

In order to achieve Property (iii) in the above proof, the crucial ingredient is
the below classical construction. In analogy to Moore’s empirical law of techno-
logical progress, it basically says that a TM can be accelerated by any constant
factor. �

2068 Ziegler

Lemma 2.5. (Linear Speed-Up) For each C ∈ N and any TM M ′ of time
complexity t(n), there exists another TM M simulating M ′ within running time
n + t(n)/C.

M can be obtained computationally from M ′; i.e., there is a fixed further TM
which, given an encoding of any M ′ and C, outputs an encoding of M as above.

Proof: See for instance, Atallah (1999, Theorem 24.5(b)). �

Recall that ‘semi-decidability’ (also called recursive enumerability) weakens
‘decidability’ from Definition 1.1. in that, here, the TM is allowed in case x �∈ L

to not halt but to loop endlessly (Hopcroft et al., 2001, Section 8.2.5). By the
first (and easy) part of Theorem 1.2, Hilbert’s Tenth Problem is semi-decidable.
More generally, every semi-decidable problem is the termination problem of an
appropriate TM (Soare, 1987, Theorem II.1.2). Theorem 2.4 thus implies that infi-
nite Turing-Parallelism can solve any semi-decidable L ⊆ N. In fact, the converse
holds as well:

Theorem 2.6. A problem L ⊆ N is solvable in the sense of Definition 2.3. (i)–(iv)
iff semi-decidable.

Proof: By the above remark, it remains to consider the case that L is solvable
by some parallel family (Mk)

k
according to Definition 2.3. We are going to semi-

decide L on a single TM by means of the following simulation: Upon input of
x ∈ N and for each k ∈ N,

• obtain from M0 a description of Mk by virtue of (iv)
• and simulate Mk on input x. (Observe its termination according to

Property (i))
• If output is “1”, halt; otherwise proceed with next k.

This algorithm indeed terminates iff at least one Mk outputs “1”, that is (ii),
iff x ∈ L. �

Corollary 2.7. Even infinite Turing concurrency cannot solve Totality.

Proof: Totality is well-known to not be semi-decidable. More specifically, we
refer to (Soare, 1987, Theorem IV.3.2) where this problem is shown to be �2-
complete, that is, [32, Definition IV.2.1 and Corollary IV.2.2] (Soare, 1987) re-
ducible to ∅(2) �∈ �2, and therefore does not belong to the class �1 ⊆ �2 of
recursively enumerable problems. �

Computational Power of Infinite Quantum Parallelism 2069

3. CONCLUSION

Section 1 has pointed out that recent and independent approaches due to
Kieu, Calude, and Pavlov to hypercomputation via quantum mechanics rely on
some sort of infinite parallelism. Regarding the respective complicated intertwined
quantum mechanical constructions, procedures, and analyses, we suggest bringing
more clarity into this subject by considering algorithmic/computational issues
separately from physical ones. This leads to the following two questions to be
treated individually:

(1) Does quantum mechanics allow for infinite parallelism; and, if so, of what
kind?

(2) What kinds of idealized infinite parallelism yield which computational
power; that is, does it and by how far exceed the fundamental capabilities
of a TM?

Section 2 contains answers to the second question. It reveals that in fact infinite
classical (i.e., Turing-) parallelism is sufficient for solving both the Halting Prob-
lem as well as Hilbert’s Tenth Problem. This leaves open whether the infinite
dimensions of quantum mechanical Hilbert Space do indeed allow for this kind of
infinite classical parallelism. Specifically,

• preparation of a certain initial state,
• its maintenance (in particular coherence) throughout the computational

evolution, and
• read-out of the final result

are likely to raise here even more difficulties than already in the finite-dimensional
case of ‘standard’ Quantum Computing (Gruska, 1999, Section 7.2). However
(im-)practicality of hypercomputation should not be confused with (un-)existence,
particularly in the light of Remark 1.4.

REFERENCES

Adamyan, V. A., Calude, C. S., and Pavlov, B. S. (2004). Transcending the limits of Turing
computability. T. Hida, K. Saito, S. Si, (ed), Quantum Information Complexity. Proceedings of
Meijo Winter School 2003, World Scientific, Singapore,pp. 119–137.

Atallah, M. J. (ed.) (1999). Algorithms and Theory of Computation Handbook, CRC Press, Boca
Raton, Florida.

Berlekamp, E. R., Conway, J. H., and Guy, R. K. (2004). Winning Ways for Your Mathematical Plays,
vol. 4, 2nd Edn., Academic Press, New York.

Beggs, E. J. and Tucker, J. V. (2004). Computations via Experiments with Kinematic Sys-
tems, Technical Report 5–2004, Department of Computer Science, University of Wales
Swansea.

2070 Ziegler

Benioff, P. (1980). The computer as a physical system: A microscopic quantum mechanical Hamiltonian
model of computers as represented by Turing Machines. Journal of Statistical Physics 22, 563– 591.

Bennett, C. H. and Landauer, R. (1985). The fundamental physical limits of computation. Scientific
American 253(1), 48–56.

Blass, A. (1984). Existence of bases implies the axiom of choice. Axiomatic Set Theory, Contemporary
Mathematics 31, 31–33.

Blum, L., Shub, M., and Smale, S. (1989). On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions, and universal machines. Bulletin of the
American Mathematical Society 21, 1–46.

Burgin, M. and Klinger, A. (eds.) (2004). Super-recursive algorithms and hypercomputation. vol. 317.
In Theoretical Computer Science, Elsevier, Amsterdam.

Calude, C. S., Dinneen, M. J., and Svozil, K. (2001). Reflections on quantum computing. In
Complexity, Vol. 6(1), Wiley, New York.

Calude, C. S., Dinneen, M. J., and Peper, F. (eds.) (2002). Unconventional Models of Computation,
Vol. 2509. In Lecture Notes in Computer Science, Springer, Heidelberg.

Calude, C. S. and Pavlov, B. (2002). Coins, quantum measurements, and Turing’s barrier. In Quantum
Information Processing, Vol. 1, Plenum, New York, pp. 107–127.

Copeland, J. (1997). The broad conception of computation. American Behavioural Scientist 40,
690–716.

Copeland, J. (2002). Hypercomputation. Minds and Machines 12, 461–502.
Copeland, J. and Proudfoot, D. (1999). Alan Turing’s forgotten ideas in computer science. Scientific

American 280(4), 98–103.
Du, D.-Z. and Ker-I Ko (2000). Theory of Computational Complexity, Wiley, New York.
Eberbach, E. and Wegner, P. (2003). Beyond Turing Machines. Bulletin of the European Association

for Theoretical Computer Science 81, 279–304.
van Emde Boas, P., Spaan, E., and Torenvliet, L. (1989). Nondeterminism, fairness and a fundamental

analogy. The Bulletin of the European Association for Theoretical Computer Science 37, 186–
193.

Etesi, G. and Németi, I. (2002). Non-Turing computations via Malament–Hogarth Space–Times.
International Journal of Theoretical Physics 41(2), 341–370.

Geroch, R. and Hartle, J. B. (1986). Computability and physical theories. Foundations of Physics
16(6), 533–550.

Gödel, K. (1940). The Consistency of the Axiom of Choice and of the Generalized Continuum-
Hypothesis With the Axioms of Set Theory, Princeton University Press, Princeton.

Gruska, J. (1999). Quantum Computing, McGraw-Hill, New York.
Hamkins, J. D. and Lewis, A. (2000). Infinite time Turing machines. Journal of Symbolic Logic 65(2),

567–604.
Hogarth, M. L. (1992). Does general relativity allow an observer to view an eternity in a finite time?.

Foundations of Physics Letters 5(2), 173–181.
Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001). Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, Reading, MA.
Kieu, T. (2003). Computing the non-computable. Contemporary Physics 44(1), 51–71.
Kieu, T. (2003). Quantum algorithm for Hilbert’s Tenth Problem. International Journal of Theoretical

Physics 42, 1461–1478.
Matiyasevich, Y. V. (1970). Enumerable sets are diophantine. Soviet Mathematics. Doklady 11,

354–357.
Ord, T. (2002). Hypercomputation: Computing more than the Turing machine, Honours Thesis,

University of Melbourne, Melbourne; http://arXiv.org/math.LO/0209332.

Odifreddi, P. (1989). Classical Recursion Theory, North-Holland, Amsterdam.

Computational Power of Infinite Quantum Parallelism 2071

Shagrir, O. and Pitowsky, I. (2003). Physical hypercomputation and the Church–Turing Hypothesis.
Minds and Machines 13, 87–101.

Soare, R. I. (1987). Recursively Enumerable Sets and Degrees, Springer, Heidelberg.
Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society 42(2), 230–265.
Turing, A. M. (1939). Systems of logic based on ordinals. Proceedings of the London Mathematical

Society 45, 161–228.
Yao, A. C.-C. (2003). Classical physics and the Church–Turing Thesis. Journal of the Association for

Computing Machinery 50(1), 100–105.

